SL3S1003_1013

UCODE G2iM and G2iM+

Rev. 3.4 — 27 February 2012 201234

Product data sheet COMPANY PUBLIC

1. General description

NXP's UCODE G2iM series transponder ICs offers in addition to the leading-edge read range features such as a Tag Tamper Alarm, Data Transfer, Digital Switch, advanced privacy-protection modes and a 640 bit configurable User Memory.

Very high chip sensitivity (–17.5 dBm) enables longer read ranges with simple, single-port antenna designs. In fashion and retail the UCODE G2iM series improve read rates and provide for theft deterrence. In the electronic device market, they are ideally suited for device configuration, activation, production control and PCB tagging. In authentication applications, they protect brands and guard against counterfeiting. They can also be used to tag containers, electronic vehicles, airline baggage, and more.

In addition to the EPC specifications the UCODE G2iM offers an integrated Product Status Flag (PSF) feature and read protection of the memory content.

The UCODE G2iM+ offers on top of the UCODE G2iM features an integrated tag tamper alarm, digital switch, external supply mode, data transfer mode and real read range reduction. A special feature is the conditional, automatic real read range reduction, where the activation condition can be defined by the user, is newly introduced in the UCODE G2iM+. When connected to a power supply, the READ as well as the WRITE range can be boosted to a sensitivity of –27 dBm.

The UCODE G2iM+ also allows the segmentation of the 640 bit User Memory in up to three segments (open, protected, private) with different access levels (Access- and User Password). For applications which require a longer EPC number the UCODE G2iM+ offers the possibility of up to 448 bit.

2. Features and benefits

2.1 Key features

- UHF RFID Gen2 tag chip according EPCglobal v1.2.0
- 256 bit EPC for UCODE G2iM and up to 448 bit EPC for UCODE G2iM+
- Up to 640 bit User Memory which can be segmented in the UCODE G2iM+
- Private User Memory area protected by special User Password
- Memory read protection
- Integrated Product Status Flag (PSF)
- Tag tamper alarm
- Digital switch
- Data transfer mode

- Real Read Range Reduction (Privacy Mode)
- Conditional Real Read Range Reduction
- External supply mode
- Long read/write ranges due to extremely low power design
- Reliable operation of multiple tags due to advanced anti-collision
- Broad international operating frequency: from 840 MHz to 960 MHz
- Data retention: 20 years
- Wide specified temperature range: -40 °C up to +85 °C

2.1.1 Memory

- 256 bit of EPC memory / up to 448 bit in G2iM+
- 96 bit Tag IDentifier (TID) including 48-bit factory locked unique serial number
- 112 bit User TID memory
- 32 bit Kill Password to permanently disable the tag
- 32 bit Access Password to allow a transition into the secured state
- 32 bit User Password to allow access to the private user memory segment
- Read protection
- BlockWrite (32 bit)
- Write Lock
- BlockPermalock

2.2 Key benefits

2.2.1 End user benefit

- Outstanding User Memory size of 640 bit
- Prevention of unauthorized memory access through different levels of read protection
- Indication of tag tampering attempt by use of the tag tamper alarm feature
- Electronic device configuration and / or activation by the use of the digital switch / data transfer mode
- Theft deterrence supported by the PSF feature (PSF alarm or EPC code)
- Small label sizes, long read ranges due to high chip sensitivity
- Product identification through unalterable TID range, including a 48 bit serial number
- Reliable operation in dense reader and noisy environments through high interference suppression

2.2.2 Antenna design benefits

- High sensitivity enables small and cost efficient antenna designs
- Low Q-Value eases broad band antenna design for global usage

2.2.3 Label manufacturer benefit

- Consistent performance on different materials due to low Q-factor
- Ease of assembly and high assembly yields through large chip input capacitance and Polyimide spacer
- Fast first WRITE or BLOCKWRITE of the EPC memory for fast label initialization

SL3S1003_1013

2.3 Custom commands

- PSF Alarm
 - Built-in PSF (Product Status Flag), enables the UHF RFID tag to be used as EAS tag (Electronic Article Surveillance) tag without the need for a back-end data base.
- Read Protect
 Protects all memory content from unauthorized reading.
- ChangeConfig
 Configures the additional features of the chip like external supply mode, tamper alarm, digital switch, read range reduction, privacy mode activation condition or data transfer.

The UCODE G2iM+ is equipped with a number of additional features. Nevertheless, the chip is designed in a way standard EPCglobal READ/WRITE/ACCESS commands can be used to operate the features. No custom commands are needed to take advantage of all the features in case of unlocked EPC memory.

3. Applications

3.1 Markets

- Fashion (apparel and footwear)
- Retail
- Electronics
- Fast moving consumer goods
- Asset management
- Electronic vehicle identification

3.2 Applications

- Supply chain management
 - Item level tagging
 - Pallet and case tracking
- Container identification
- Product authentication
- PCB tagging
- Cost efficient, low level seals
- Wireless firmware download
- Wireless product activation

4. Ordering information

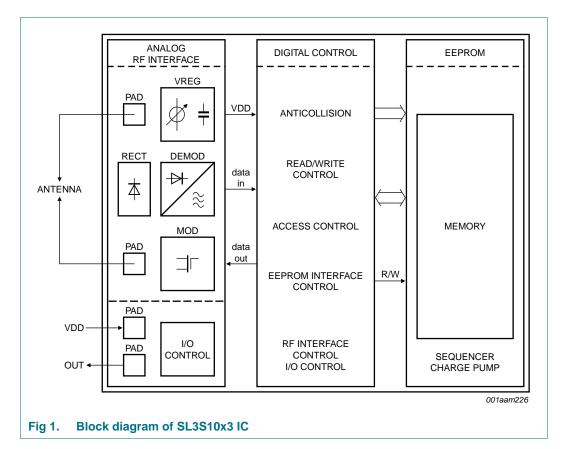
Table 1. Ordering information

Type number	Package			
	Name	IC type	Description	Version
SL3S1003FUD/BG	Wafer	G2iM	bumped G2iM die on sawn 8" 120 μ m wafer, 7 μ m Polyimide spacer	not applicable
SL3S1013FUD/BG	Wafer	G2iM+	bumped G2iM+ die on sawn 8" 120 μ m wafer, 7 μ m Polyimide spacer	not applicable
SL3S1003FTB0	XSON6	G2iM	plastic extremely thin small outline package; no leads; 6 terminals; body 1 \times 1.45 \times 0.5 mm	SOT886F1
SL3S1013FTB0	XSON6	G2iM+	plastic extremely thin small outline package; no leads; 6 terminals; body 1 \times 1.45 \times 0.5 mm	SOT886F1

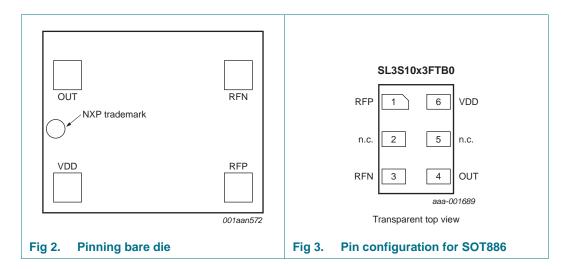
5. Marking

Table 2. Marking codes

Type number	Marking code	Comment	Version
SL3S1003FTB0	UR	UCODE G2iM	SOT886
SL3S1013FTB0	US	UCODE G2iM+	SOT886


6. Block diagram

The SL3S10x3 IC consists of three major blocks:


- Analog Interface
- Digital Control
- EEPROM

The analog part provides stable supply voltage and demodulates data received from the reader for being processed by the digital part. Further, the modulation transistor of the analog part transmits data back to the reader.

The digital section includes the state machines, processes the protocol and handles communication with the EEPROM, which contains the EPC and the user data.

7. Pinning information

7.1 Pin description

Table 3. Pin description bare die

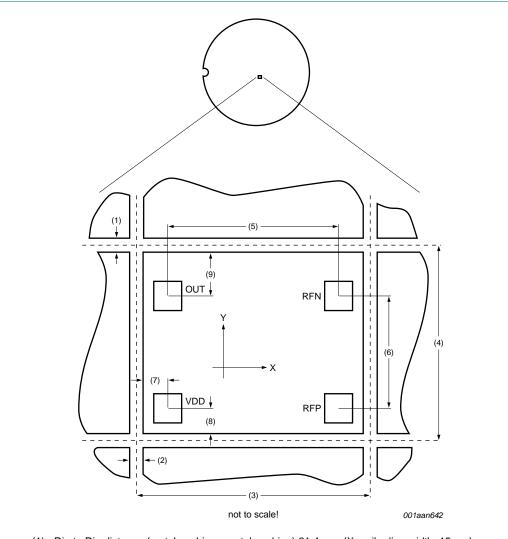

Symbol	Description
OUT	output pin
RFN	grounded antenna connector
VDD	external supply
RFP	ungrounded antenna connector

Table 4. Pin description SOT886

Pin	Symbol	Description
1	RFP	ungrounded antenna connector
2	n.c.	not connected
3	RFN	grounded antenna connector
4	OUT	output pin
5	n.c.	not connected
6	VDD	external supply

8. Wafer layout

8.1 Wafer layout

- (1) Die to Die distance (metal sealring metal sealring) 21,4 μ m, (X-scribe line width: 15 μ m)
- (2) Die to Die distance (metal sealring metal sealring) 21,4 μ m, (Y-scribe line width: 15 μ m)
- (3) Chip step, x-length: 615 μm
- (4) Chip step, y-length: 475 μm
- (5) Bump to bump distance X (OUT RFN): 513 μm
- (6) Bump to bump distance Y (RFN RFP): 333 μm
- (7) Distance bump to metal sealring X: 43,5 μm (outer edge top metal)
- (8) Distance bump to metal sealring (RFP, VDD) Y: 40,3 μm
- (9) Distance bump to metal sealring (RFN, OUT) Y: 80,3 μ m Bump size X × Y: 60 μ m × 60 μ m

Remark: OUT and VDD are used with G2iM+ only

Fig 4. SL3S10x3 wafer layout

9. Mechanical specification

The SL3S10x3 wafers are offered with 120 μ m thickness and 7μ m Polyimide spacer. This robust structure with the enhanced Polyimide spacer supports easy assembly due to low assembly variations.

9.1 Wafer specification

See Ref. 20 "Data sheet - Delivery type description – General specification for 8" wafer on UV-tape with electronic fail die marking, BU-ID document number: 1093**".

9.1.1 Wafer

Table 5. Specifications

Table 5. Specifications	
Wafer	
Designation	each wafer is scribed with batch number and wafer number
Diameter	200 mm (8")
Thickness	120 μm ±15 μm
Number of pads	4
Pad location	non diagonal/ placed in chip corners
Distance pad to pad RFN-RFP	333.0 µm
Distance pad to pad OUT-RFN	513.0 μm
Process	CMOS 0.14 μm
Batch size	25 wafers
Potential good dies per wafer	100544
Wafer backside	
Material	Si
Treatment	ground and stress release
Roughness	R_a max. 0.5 μ m, R_t max. 5 μ m
Chip dimensions	
Die size including scribe	$0.615 \text{ mm} \times 0.475 \text{ mm} = 0.292 \text{ mm}^2$
Scribe line width:	x-dimension = 15 μ m
	y-dimension = 15 μm
Passivation on front	
Туре	Sandwich structure
Material	PE-Nitride (on top)
Thickness	1.75 μm total thickness of passivation
Polyimide spacer	7 μm
Au bump	
Bump material	> 99.9% pure Au
Bump hardness	35 – 80 HV 0.005
Bump shear strength	> 70 MPa
Bump height	25 μm[^{1]}
Bump height uniformity	

– within a die	± 2 μ m
within a wafer	± 3 μm
wafer to wafer	± 4 μ m
Bump flatness	± 1.5 μm
Bump size	
– RFP, RFN	60 × 60 μm

 $60 \times 60 \mu m$ $\pm 5 \mu m$

9.1.2 Fail die identification

Bump size variation

- OUT, VDD

Table 5.

No inkdots are applied to the wafer.

Specifications ...continued

Electronic wafer mapping (SECS II format) covers the electrical test results and additionally the results of mechanical/visual inspection.

See Ref. 20 "Data sheet - Delivery type description – General specification for 8" wafer on UV-tape with electronic fail die marking, BU-ID document number: 1093**"

9.1.3 Map file distribution

See Ref. 20 "Data sheet - Delivery type description – General specification for 8" wafer on UV-tape with electronic fail die marking, BU-ID document number: 1093**"

^[1] Because of the 7 μm spacer, the bump will measure 18 μm relative height protruding the spacer.

10. Functional description

10.1 Air interface standards

The UCODE G2iM fully supports all parts of the "Specification for RFID Air Interface EPCglobal, EPCTM Radio-Frequency Identity Protocols, Class-1 Generation-2 UHF RFID, Protocol for Communications at 860 MHz to 960 MHz, Version 1.2.0".

10.2 Power transfer

The interrogator provides an RF field that powers the tag, equipped with a UCODE G2iM. The antenna transforms the impedance of free space to the chip input impedance in order to get the maximum possible power for the UCODE G2iM on the tag. The UCODE G2iM+ can also be supplied externally.

The RF field, which is oscillating on the operating frequency provided by the interrogator, is rectified to provide a smoothed DC voltage to the analog and digital modules of the IC.

The antenna attached to the chip may use a DC connection between the two antenna pads which also enables loop antenna design.

10.3 Data transfer

10.3.1 Reader to tag Link

An interrogator transmits information to the UCODE G2iM by modulating an UHF RF signal. The UCODE G2iM receives both information and operating energy from this RF signal. Tags are passive, meaning that they receive all of their operating energy from the interrogator's RF waveform. In order to further improve the read range the UCODE G2iM can be externally supplied as well so the energy to operate the chip does not need to be transmitted by the reader.

An interrogator is using a fixed modulation and data rate for the duration of at least one inventory round. It communicates to the UCODE G2iM by modulating an RF carrier using DSB-ASK with PIE encoding.

For further details refer to Section 17, Ref. 1. Interrogator-to-tag (R=>T) communications.

10.3.2 Tag to reader Link

An interrogator receives information from a UCODE G2iM by transmitting an unmodulated RF carrier and listening for a backscattered reply. The UCODE G2iM backscatters by switching the reflection coefficient of its antenna between two states in accordance with the data being sent. For further details refer to Section 17, Ref. 1, chapter 6.3.1.3.

The UCODE G2iM communicates information by backscatter-modulating the amplitude and/or phase of the RF carrier. Interrogators shall be capable of demodulating either demodulation type.

The encoding format, selected in response to interrogator commands, is either FM0 baseband or Miller-modulated subcarrier.

10.4 UCODE G2iM and UCODE G2iM+ differences

The UCODE G2iM is tailored for application where EPC or TID number space, and User Memory is needed. The UCODE G2iM+ provides beside the segmented memory additional functionality such as tag tamper alarm, external supply operation to further boost read/write range (external supply mode), a privacy mode reducing the read range where the activation criteria (open or short) can be defined or I/O functionality (data transfer to externally connected devices) where required.

The following table provides an overview of UCODE G2iM, UCODE G2iM+ special features.

Table 6. Overview of UCODE G2iM and UCODE G2iM+ features

Features	UCODE G2iM	UCODE G2iM+
Read protection (bankwise)	yes	yes
PSF (Built-in Product Status Flag)	yes	yes
Backscatter strength reduction	yes	yes
BlockWrite (32 bit)	yes	yes
BlockPermalock	yes	yes
User TID (112 bit)	yes	yes
Segmented user memory (open, protected, private)	-	yes
Additional User Password for private memory	-	yes
EPC size selectable (448bit max.)	-	yes
Tag tamper alarm	-	yes
Digital switch / Digital input	-	yes
External supply mode	-	yes
Data transfer	-	yes
Real read range reduction	-	yes
Conditional Real Read Range Reduction	-	yes

10.5 Supported commands

The UCODE G2iM supports all mandatory EPCglobal V1.2.0 commands.

In addition the UCODE G2iM supports the following optional commands:

- ACCESS
- BlockWrite (32 bit)
- BlockPermalock

The UCODE G2iM features the following **custom** commands described more in detail later:

•	ResetReadProtect	(backward compatible to UCODE G2X; UCODE G2iL)
•	ReadProtect	(backward compatible to UCODE G2X; UCODE G2iL)
•	ChangeEAS	(backward compatible to UCODE G2X; UCODE G2iL)
•	EAS_Alarm	(backward compatible to UCODE G2X; UCODE G2iL)
•	ChangeConfig	(backward compatible to UCODE G2iL)

10.6 UCODE G2iM and UCODE G2iM+ memory

The UCODE G2iM and UCODE G2iM+ memory is implemented according EPCglobal Class1Gen2 and organized in four banks:

Table 7. UCODE G2iM and UCODE G2iM+ memory sections

Name	Size	Bank
Reserved memory (32 bit ACCESS and 32 bit KILL password)	64 bit	00b
EPC (excluding 16 bit CRC-16 and 16 bit PC) (UCODE G2iM)	256 bit	01b
EPC (excluding 16 bit CRC-16 and 16 bit PC) (UCODE G2iM+)	128 bit up to 448 bit	
G2iM Configuration Word (Config-Word)	16 bit	01b
G2iM Memory Configuration Word (Mem-Config-Word)	16 bit	01b
TID (including permalocked unique 48 bit serial number; 16bit unalterable XTID-header)	96 bit	10b
User TID	112 bit	10b
User memory (UCODE G2iM)	512 bit	11b
User memory can be segmented and configured (UCODE G2iM+)	320 bit up to 640 bit	

The logical address of all memory banks begin at zero (00h).

In addition to the four memory banks two configuration words are available. The first to handle the UCODE G2iM memory configuration (Mem-Config-Word) is available at EPC bank 01 address 1F0h and the second to handle UCODE G2iM specific features Config-Word) is available at EPC bank 01 address 200h. The configuration words are described in detail in Section 10.7.1 "ChangeConfig" and Section 10.7.3 "UCODE G2iM+memory configuration control mechanism".

Memory pages (16 bit words) pre-programmed to zero will not execute an erase cycle before writing data to it. This approach accelerates initialization of the chip and enables faster programming of the memory.

10.6.1 UCODE G2iM and UCODE G2iM+ overall memory map

Table 8. UCODE G2iM and UCODE G2iM+ overall memory map

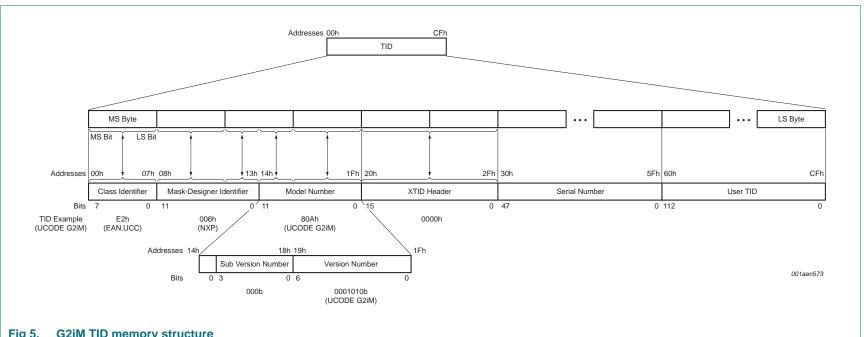
Bank address	Memory address	Туре	Content	Initial	Remark
Bank 00	00h to 1Fh	reserved	Kill Password	all 00h	unlocked memory
	20h to 3Fh	reserved	Access Password	all 00h	unlocked memory
Bank 01 EPC	00h to 0Fh	EPC	CRC-16: refer to Ref. 16		memory mapped calculated CRC
	10h to 14h	EPC	backscatter length	00110b	unlocked memory
	15h	EPC	UMI	0b	calculated according EPC
	16h	EPC	reserved for future use	0b	hardwired to 0
	17h to 1Fh	EPC	numbering system indicator	00h	unlocked memory
	20h to 9Fh	EPC	EPC	[1]	unlocked memory
Bank 01	1F0h to 1F3h	EPC	RFU	0000b	hardwired to 0000b
Memory Config Word	1F4h to 1F7h	EPC	Number of EPC blocks	0h	unlocked memory
Cornig vvoid	1F8h to 1FBh	EPC	Number protected memory blocks	0h	unlocked memory
	1FCh to 1FFh	EPC	Number of private memory blocks	0h	unlocked memory
Bank 01	200h	EPC	tamper alarm flag	0b[4]	indicator bit
Config Word	201h	EPC	external supply flag or input signal	0b[4]	indicator bit
	202h	EPC	RFU	0b[4]	locked memory
	203h	EPC	RFU	0b[4]	locked memory
	204h	EPC	invert digital output:	0b[4]	temporary bit
	205h	EPC	transparent mode on/off	0b[4]	temporary bit
	206h	EPC	transparent mode data/raw	0b[4]	temporary bit
	207h	EPC	conditional read range reduction	0b[4]	unlocked memory
	208h	EPC	conditional read range reduction open/short	0b[<u>4]</u>	unlocked memory
	209h	EPC	max. backscatter strength	1b[4]	unlocked memory
	20Ah	EPC	digital output	0b <u>[4]</u>	unlocked memory
	20Bh	EPC	read range reduction on/off	0b[4]	unlocked memory
	20Ch	EPC	read protect User Memory	0b <u>^[4]</u>	locked memory
	20Dh	EPC	read protect EPC Bank	0b[4]	unlocked memory
	20Eh	EPC	read protect TID	0b[4]	unlocked memory
	20Fh	EPC	PSF alarm flag	0b[4]	unlocked memory

Table 8. UCODE G2iM and UCODE G2iM+ overall memory map

Bank address	Memory address	Туре	Content	Initial	Remark
Bank 10	00h to 07h	TID	allocation class identifier	1110 0010b	locked memory
TID	08h to 13h	TID	tag mask designer identifier	0000 0000 0110b	locked memory
	14h	TIG	config word indicator	1b ²	locked memory
	14h to 1Fh	TID	tag model number	TMNR ^[3]	locked memory
	20h to 2Fh	TID	XTID Header	00h	locked memory
	30h to 5Fh	TID	serial number	SNR	locked memory
	60h to CFh	TID	User TID memory	all '0'	unlocked memory
Bank 11 USER	000h to 27Fh	USER	User Memory	undefined	unlocked memory

^[1] UCODE G2iM: HEX E200 680A 0000 0000 0000 0000 (0000 0000) UCODE G2iM+: HEX E200 680B 0000 0000 0000 0000 (0000 0000)

^[2] Indicates the existence of a Configuration Word at the end of the EPC number


^[3] See Figure 5

^[4] See also <u>Table 13</u> for further details.

10.6.2 UCODE G2iM and UCODE G2iM+ TID memory details

G2iM TID description Table 9.

Model					Model number		
Туре	First 32 bit of TID memory	Class ID	Mask designer ID	Config Word indicator	Sub version number	Version (Silicon) number	
UCODE G2iM	E200680A	E2h	006h	1	0000b	0001010	
UCODE G2iM+	E200680B	E2h	006h	1	0000b	0001011	

G2iM TID memory structure

10.7 Custom commands

The UCODE G2iM and UCODE G2iM+ supports a number of additional features and custom commands.

Nevertheless, the chip is designed in a way standard EPCglobal READ/WRITE/ACCESS commands can be used to operate the features.

The memory map stated in the previous section describes the Config-Word used to control the additional features located at address 200h as well as the Mem-Config-Word located at 1F0h of the EPC memory. For this reason the standard READ/WRITE commands of an UHF EPCglobal compliant reader can be used to select the flags, activate/deactivate features or define memory segments.

The features can only be activated/deactivated (written) using standard EPC WRITE command as long the EPC is not locked. In case the EPC is locked either the bank needs to be unlocked to apply changes or the ChangeConfig custom command is used to change the settings.

The UCODE G2iM products supports the complete UCODE G2iL command set for backward compatibility reasons.

Bit 14h of the TID indicates the existence of a Configuration Word. This flag will enable selecting Config-Word enhanced transponders in mixed tag populations.

10.7.1 ChangeConfig

Although UCODE G2iM is tailored for supply chain management, item level tagging and product authentication the UCODE G2iM+ version enables active interaction with products. Among the password protected features are the capability of download firmware to electronics, activate/deactivate electronics which can also be used as theft deterrence, a dedicated privacy mode by reducing the read range, integrated PSF (Product Status Flag) or Tag Tamper Alarm. In addition to the UCODE G2iL/G2iL+ the activation condition (open/short) for the Read Range Reduction can be defined by the user.

The UCODE G2iM ChangeConfig custom command allows handling the special NXP Semiconductors features described in the following paragraph. Please also see the memory map in Section 10.6 "UCODE G2iM and UCODE G2iM+ memory" and "Section 10.7.2 "UCODE G2iM and UCODE G2iM+ special features control mechanism". If the EPC memory is not write locked the standard EPC READ/WRITE command can be used to change the settings.

UCODE G2iM and UCODE G2iM+ special features¹

UCODE G2iM and UCODE G2iM+ common special features are:

Bank wise read protection (separate for EPC, TID and User Memory)
 EPC bank (except of configuration words), the serial number part of the TID as well as the User TID and the User Memory (open segment) can be read protected independently. When protected reading of the particular memory will return '0'. The flags of the Config-Word can be selected using the standard SELECT command. Only read protected parts will then participate an inventory round.

SL3S1003_1013

All information provided in this document is subject to legal disclaimers

© NXP B.V. 2012. All rights reserved.

The features can only be manipulated (enabled/disabled) with unlocked EPC bank, otherwise the ChangeConfig command can be used.

Integrated PSF (Product Status Flag)

The PSF is a general purpose flag that can be used as an EAS (Electronic Article Surveillance) flag, quality checked flag or similar.

The UCODE G2iM offers two ways of detecting an activated PSF. In cases extremely fast detection is needed the EAS_Alarm command can be used. The UCODE G2iM will reply a 64 bit alarm code like described in section EAS_Alarm upon sending the command. As a second option the EPC SELECT command selecting the PSF flag of the Config-Word can be used. In the following inventory round only PSF enabled chips will reply their EPC number.

Backscatter strength reduction

The UCODE G2iM features two levels of backscatter strengths. Per default maximum backscatter is enabled in order to enable maximum read rates. When clearing the flag the strength can be reduced if needed.

UCODE G2iM+ specific special features are:1

• Real Read Range Reduction 4R (UCODE G2iM+ only)

Some applications require the reduction of the read range to close proximity for privacy reasons. Setting the 4R flag will significantly reduce the chip sensitivity to +12 dBm. The +12 dBm have to be available at chip start up (slow increase of field strength is not applicable). For additional privacy, the read protection can be activated in the same configuration step. The related flag of the configuration word can be selected using the standard SELECT command so only chips with reduced read range will be part of an inventory.

Remark: The attenuation will result in only a few centimeter of read range at 36 dBm EIRP!

• Tag Tamper Alarm (UCODE G2iM+ only)

The UCODE G2iM+ Tamper Alarm will flag the status of the VDD to OUT pad connection which can be designed as an predetermined breaking point (see Figure 6).

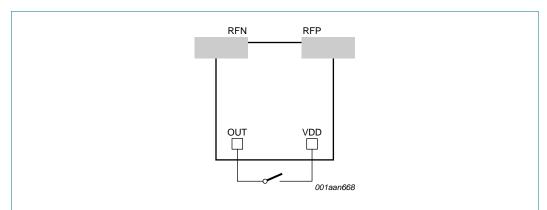


Fig 6. Schematic of connecting VDD and OUT pad with a predetermined breaking point to turn a standard RFID label into a wireless safety seal

The status of the pad connection (open/closed) can be read in the configuration register and/or selected using the EPC SELECT. This feature enables the design of a wireless RFID safety seal. When breaking the connection by peeling off the label or manipulating a lock an alarm can be triggered.

SL3S1003_1013

Conditional Real Read Range Reduction (UCODE G2iM+ only)

In addition to the 4R and the Tag Tamper Alarm feature the UCODE G2iM+ offers a feature which combines both in one functionallity. This feature allow the automatic activation of the 4R depending on the status of the VDD to OUT pad connection. To offer high flexibility for the applications the 4R activation can be done on short (bit 8 = '1') or open (bit 8 = '0') of the VDD to OUT pad connection. For activation of this feature bit 7 and bit 11 of the Config-Word have to be set to '1'.

• Digital Switch (UCODE G2iM+ only)

The UCODE G2iM+ OUT pin can be used as digital switch. The state of the output pad can be switched to VDD or GND depending on the Digital OUT bit of the Config-Word register. The state of the output is persistent in the memory even after KILL or switching off the supply. This feature will allow activating/deactivating externally connected peripherals or can be used as theft deterrence of electronics. The state of the OUT pin can also be changed temporary by toggling the 'Invert Digital Output' bit.

Data transfer Mode (UCODE G2iM+ only)

In applications where not switching the output like described in "Digital Switch" but external device communication is needed the UCODE G2iM+ Data Transfer Mode can be used by setting the according bit of the Config-Word register. When activated the air interface communication will be directly transferred to the OUT pad of the chip.

Two modes of data transfer are available and can be switched using the Transparent Mode DATA/RAW bit.

The default Transparent Mode DATA will remove the Frame Sync of the communication and toggle the output with every raising edge in the RF field. This will allow implementing a Manchester type of data transmission.

The Transparent Mode RAW will switch the demodulated air interface communication to the OUT pad.

External Supply Indicator - Digital Input (UCODE G2iM+ only)

The VDD pad of the UCODE G2iM+ can be used as a digital input pin. The state of the pad is directly associated with the External Supply Indicator bit of the configuration register. A simple return signaling (chip to reader) can be implemented by polling this Configuration Word register flag. RF reset is necessary for proper polling.

External Supply Mode (G2iM+ only)

The UCODE G2iM+ can be supplied externally by connecting 1.85 V (lout = 0μ A) supply. When externally supplied less energy from the RF field is needed to operate the chip. This will not just enable further improved sensitivity and read ranges (up to -27 dBm) but also enable a write range that is equal to the read range.

The figure schematically shows the supply connected to the UCODE G2iM+.

Remark: When permanently externally supplied there will not be a power-on-reset. This will result in the following limitations:

- When externally supplied session flag S0 will keep it's state during RF-OFF phase.
- When externally supplied session flag S2, S3, SL will have infinite persistence time and will behave similar to S0.
- Session flag S1 will behave regular like in pure passive operation.

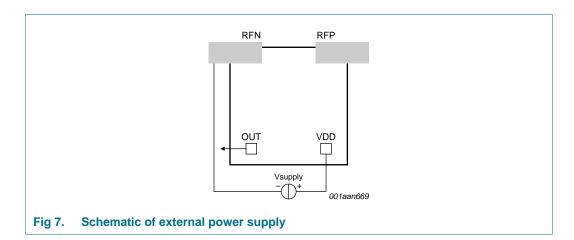


Table 10. ChangeConfig custom command

	Command	RFU	Data	RN	CRC-16
No. of bits	16	8	16	16	16
Description	11100000 00000111	00000000	Toggle bits XOR RN 16	handle	-

The bits to be toggled in the configuration register need to be set to '1'.

E.g. sending 0000 0000 0001 0001 XOR RN16 will activate the 4R and PSF. Sending the very same command a second time will disable the features again.

The reply of the ChangeConfig will return the current register setting.

Table 11. ChangeConfig custom command reply

	Header	Status bits	RN	CRC-16
No. of bits	1	16	16	16
Description	0	Config-Word	Handle	-

Table 12. ChangeConfig command-response table

Starting state	Condition	Response	Next state
ready	all	-	ready
arbitrate, reply, acknowledged	all	-	arbitrate
open	valid handle Status word needs to change	Backscatter unchanged Config-Word immediately	open
	valid handle Status word does not need to change	Backscatter Config-Word immediately	open
secured	valid handle Status word needs to change	Backscatter modified Config-Word, when done	secured
	valid handle Status word does not need to change	Backscatter Config-Word immediately	secured
killed	all	-	killed

The features can only be activated/deactivated using standard EPC WRITE if the EPC bank is unlocked. The permanent and temporary bits of the Configuration Word can be toggled without the need for an Access Password in case the Access Password is set to zero. In case the EPC bank is locked the lock needs to be removed before applying changes or the ChangeConfig command has to be used.

10.7.2 UCODE G2iM and UCODE G2iM+ special features control mechanism

Special features of the UCODE G2iM are managed using a configuration word (Config-Word) located at address 200h in the EPC memory bank.

The entire Config-Word is selectable (using the standard EPC SELECT command), as well as single bits, and can be read using standard EPC READ command and modified using the standard EPC WRITE or ChangeConfig custom command in case the EPC memory is locked for writing.

ChangeConfig can be executed from the OPEN and SECURED state. The chip will take all "Toggle Bits" for '0' if the chip is in the OPEN state or the ACCESS password is zero; therefore it will not alter any status bits, but report the current status only. The command will be ignored with an invalid CRC-16 or an invalid handle. The chip will then remain in the current state. The CRC-16 is calculated from the first command-code bit to the last handle bit.

A ChangeConfig command without frame-sync and proceeding Req_RN will be ignored. The command will also be ignored if any of the RFU bits are toggled.

In order to change the configuration, to activate/deactivate a feature a '1' has to be written to the corresponding register flag to toggle the status. E.g. sending 0x0002 to the register will activate the read protection of the TID. Sending the same command a second time will again clear the read protection of the TID. Invalid toggling on indicator or RFU bits are ignored.

Executing the command with zero as payload or in the OPEN state will return the current register settings. The chip will reply to a successful ChangeStatus with an extended preamble regardless of the TRext value of the Query command.

After sending a ChangeConfig an interrogator shall transmit CW for less than TReply or 20ms, where TReply is the time between the interrogator's ChangeConfig command and the chip's backscattered reply. An interrogator may observe three possible responses after sending a ChangeConfig, depending on the success or failure of the operation

- ChangeConfig succeeded: The chip will backscatter the reply shown above comprising a header (a 0-bit), the current Config-Word setting, the handle, and a CRC-16 calculated over the 0-bit, the Config-Word and the handle. If the interrogator observes this reply within 20 ms then the ChangeConfig completed successfully.
- The chip encounters an error: The chip will backscatter an error code during the CW period rather than the reply shown below (see EPCglobal Spec for error-code definitions and for the reply format).
- ChangeConfig does not succeed: If the interrogator does not observe a reply within 20 ms then the ChangeConfig did not complete successfully. The interrogator may issue a Req_RN command (containing the handle) to verify that the chip is still in the interrogator's field, and may reissue the ChangeConfig command.

SL3S1003_1013

The UCODE G2iM configuration word (Config-Word) is located at address 200h of the EPC memory and is structured as following:

Table 13. Address 200h to 207h

Indicator bits				Temporary bits	Permanent bits		
Tamper indicator	External supply indicator	RFU	RFU	Invert Output	Transparent mode on/off	Data mode data/raw	Conditional Read Range Reduction on/off
0	1	2	3	4	5	6	7

Table 14. Address 208h to 20Fh

Permanent bit	Permanent bits							
Conditional Read Range Reduction open/short	max. backscatter strength	Digital output	Read Range Reduction	Protect UM	Protect EPC	Protect TID	PSF Alarm bit	
8	9	10	11	12	13	14	15	

The configuration word contains three different type of bits:

Indicator bits cannot be changed by command:
 Tag Tamper Alarm Indicator
 External Supply Indicator (digital input)

• Temporary bits are reset at power up:

Invert Output

Transparent Mode on/off

Data Mode data/raw

• Permanent bits: permanently stored bits in the memory

Conditional Read Range Reduction on/off

Conditional Read Range Reduction short/open

Max. Backscatter Strength

Digital Output

Read Range Reduction

Read Protect User Memory

Read Protect EPC

Read Protect TID

PSF Alarm

10.7.3 UCODE G2iM+ memory configuration control mechanism

The segmented user memory available in the UCODE G2iM+ enables a flexible configuration of the device with respect to EPC size and access rights to the User Memory.

The standard configuration offers 256 bit EPC memory and 512 bit open User Memory for UCODE G2iM and 128 bit EPC memory and 640 bit open User Memory for UCODE G2iM+. For applications where more EPC memory is required the UCODE G2iM+ offers the flexibility to extend the 128 bit EPC up to 448 bit (in steps of 64 bit) by reducing the User Memory size accordingly. See Table 15 and Table 17.

Table 15. EPC / User Memory Standard Configuration (UCODE G2iM)

EPC Memory	User Memory
	Open
256 bit	512 bit

Table 16. EPC / User Memory Standard Configuration (UCODE G2iM+)

EPC Memory	User Memory
	Open
128 bit	640 bit

Table 17. EPC / User Memory Max. EPC Configuration (UCODE G2iM+)

EPC Memory	User Memory
	Open
448 bit	320 bit

Beside the possibility to extend the EPC memory the UCDOE G2iM+ offers the possibility to segment the User Memory in up to three areas with different access rights.

- Open: no read/write protection
- Protected: read/write protected by the Access Password
- Private: read/write protected by the User Password (see Section 10.7.3.1)

The memory configuration can be defined one time, by programming the memory configuration word, at the initialization of the UCODE G2iM+. The UCODE G2iM+ Memory Configuration Word (Mem-Config-Word) is located at address 1F0h of the EPC memory and is structured as following:

Table 18. Memory Configuration Word, Address 1F0h to 1FFh

RFU				Num of E	nber PC bloc	:ks			ber of ected n	nemory	blocks		ber of te mem	ory blo	cks
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

RFU-Bits:

The four RFU bits are fixed to 0000b. These four bits are ignored for access commands (e.g. WRITE).

Number of EPC blocks:

The 4 bit of this region specify the number of blocks (max. 5) which should be added on top of the standard EPC Memory of 128bit.

• Number of Protected memory blocks:

The 4 bit of this region specify the number of blocks which should be used for the Protected memory region.

Number of Private memory blocks:

The 4 bit of this region specify the number of blocks which should be used for the Private memory region.

The total amount of User Memory is defined by the number of blocks for EPC-, Open-, Protected- and Private- memory area. Based on the total User Memory size (640 bit) and the defined block size of 64 bit, the overall number of blocks results in ten blocks. As described in the examples (Table 19 to Table 21) below the blocks used for the EPC-, Open-, Protected- or Private segment can be exchanged according to the application requirements as long as the overall block number is below ten.

The number of blocks allocated to the Open Memory Area are defined by the number of blocks specified in the Mem-Config-Word, therefore the size of the Open Memory area is derived by subtracting the number of defined blocks (Mem-Config-Word) from the total available number of blocks of the User Memory (10 blocks). Undefined blocks are always added to the Open Memory area.

In case an invalid total amount of blocks (exceeds ten) is written to the Mem-Config-Word, the configuration fails and the error code (Locked Memory) will be returned.

The entire Mem-Config-Word is selectable (using the standard EPC SELECT command), as well as single bits, and can be read using standard EPC READ command and modified using the standard EPC WRITE command.

NOTE:

THE MEM-CONFIG-WORD IS ONE TIME PROGRAMMABLE.

Programming has be performed in the secured state.

In case no programming of the memory configuration word is done at the initialization of the UCODE G2iM+ it will be automatically locked upon a lock of any part of the memory.

SL3S1003_1013

The following tables will provide a few examples for different memory configurations.

 Standard EPC size, 4 blocks Protected and 3 blocks Private memory which results in 3 blocks Open memory.

(Mem-Config-Word value: 0043h)

See Table 19

Table 19. User Memory Configuration with 3 segments

EPC Memory	User Memory		
	Open	Protected	Private
128 bit	192 bit	256 bit	192 bit

 Standard EPC size, 3 blocks Protected memory which results in 7 blocks Open memory. (Mem-Config-Word value: 0030h).
 See Table 20

Table 20. User Memory Configuration with 2 segments (no Private segment)

EPC Memory	User Memory	
	Open	Protected
128 bit	448 bit	192 bit

 192 bit EPC (1 block EPC added), 6 blocks Private memory which results in 4 blocks Open memory. (Mem-Config-Word value: 0106h)
 See Table 21

Table 21. User Memory Configuration with 2 areas (no Access password protected area)

EPC Memory	User Memory	
	Open	Private
192 bit	256 bit	384 bit

10.7.3.1 Private Memory Segment

The Private memory is a part of the User Memory which can be accessed out of the secured state only. Private regions will appear as non existent to not authorized users.

The address of the location of the User Password is not fixed and has therefore to be calculated based on the applied memory configuration.

The 32 bit User Password is located at the end of the User Memory. Since the UCODE G2iM+ memory is configurable and can be segmented the address location of the User Password depends on the Memory configuration done at the initialization.

User Password address calculation:

HEX[(Total number of memory blocks - blocks appointed to EPC)*Blocksize)]

Example:

EPC length: 192

This means that 1 block from the User Memory is required (128 bit + 64 bit)

HEX[(10-1)*64]=HEX[9*64]=HEX[384]=240h

Therefore the User Password for this configuration is located at address 240h to 25Fh

SL3S1003_1013

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2012. All rights reserved.

10.7.4 ReadProtect²

The UCODE G2iM ReadProtect custom command enables reliable read protection of the entire UCODE G2iM memory. Executing ReadProtect from the Secured state will set the ProtectEPC and ProtectTID bits of the Configuration Word to '1'. With the ReadProtect-Bit set the UCODE G2iM will continue to work unaffected but veil its protected content.

The read protection can be removed by executing Reset ReadProtect. The ReadProtect-Bits will than be cleared.

Devices whose access password is zero will ignore the command. A frame-sync must be pre-pended the command.

After sending the ReadProtect command an interrogator shall transmit CW for the lesser of T_{Reply} or 20 ms, where T_{Reply} is the time between the interrogator's ReadProtect command and the backscattered reply. An interrogator may observe three possible responses after sending a ReadProtect, depending on the success or failure of the operation:

- ReadProtect succeeds: After completing the ReadProtect the UCODE G2iM shall backscatter the reply shown in <u>Table 23</u> comprising a header (a 0-bit), the tag's handle, and a CRC-16 calculated over the 0-bit and handle. Immediately after this reply the UCODE G2iM will render itself to this ReadProtect mode. If the interrogator observes this reply within 20 ms then the ReadProtect completed successfully.
- The UCODE G2iM encounters an error: The UCODE G2iM will backscatter an error code during the CW period rather than the reply shown in the EPCglobal Spec (see Annex I for error-code definitions and for the reply format).
- ReadProtect does not succeed: If the interrogator does not observe a reply within 20 ms then the ReadProtect did not complete successfully. The interrogator may issue a Req_RN command (containing the handle) to verify that the UCODE G2iM is still in the interrogation zone, and may re-initiate the ReadProtect command.

The UCODE G2iM reply to the ReadProtect command will use the extended preamble shown in EPCglobal Spec (Figure 6.11 or Figure 6.15), as appropriate (i.e. a Tag shall reply as if TRext=1) regardless of the TRext value in the Query that initiated the round.

Table 22. ReadProtect command

	Command	RN	CRC-16
# of bits	16	16	16
description	11100000 00000001	handle	-

Table 23. UCODE G2iM reply to a successful ReadProtect procedure

	Header	RN	CRC-16
# of bits	1	16	16
description	0	handle	-

^{2.} Note: The ChangeConfig command can be used instead of "ReadProtect", "ResetReadProtect", "ChangeEAS".

Table 24. ReadProtect command-response table

Starting State	Condition	Response	Next State
ready	all	_	ready
arbitrate, reply, acknowledged	all	-	arbitrate
open	all	-	open
secured	valid handle & invalid access password	-	arbitrate
	valid handle & valid non zero access password	Backscatter handle, when done	secured
	invalid handle	_	secured
killed	all	_	killed

10.7.5 Reset ReadProtect²

Reset ReadProtect allows an interrogator to clear the ProtectEPC and ProtectTID bits of the Configuration Word. This will re-enable reading of the related UCODE G2iM memory content.

For details on the command response please refer to <u>Table 25 "Reset ReadProtect</u> command".

After sending a Reset ReadProtect an interrogator shall transmit CW for the lesser of TReply or 20 ms, where TReply is the time between the interrogator's Reset ReadProtect command and the UCODE G2iM backscattered reply. A Req_RN command prior to the Reset ReadProtect is necessary to successfully execute the command. A frame-sync must be pre-pended the command.

An interrogator may observe three possible responses after sending a Reset ReadProtect, depending on the success or failure of the operation:

- Reset ReadProtect succeeds: After completing the Reset ReadProtect a UCODE
 G2iM will backscatter the reply shown in <u>Table 26</u> comprising a header (a 0-bit), the
 handle, and a CRC-16 calculated over the 0-bit and handle. If the interrogator
 observes this reply within 20 ms then the Reset ReadProtect completed successfully.
- The UCODE G2iM encounters an error: The UCODE G2iM will backscatter an error code during the CW period rather than the reply shown in <u>Table 26</u> (see EPCglobal Spec for error-code definitions and for the reply format).
- Reset ReadProtect does not succeed: If the interrogator does not observe a reply
 within 20 ms then the Reset ReadProtect did not complete successfully. The
 interrogator may issue a Req_RN command (containing the handle) to verify that the
 G2iM is still in the interrogation zone, and may reissue the Reset ReadProtect
 command.

The UCODE G2iM reply to the Reset ReadProtect command will use the extended preamble shown in EPCglobal Spec (Figure 6.11 or Figure 6.15), as appropriate (i.e. a UCODE G2iM will reply as if TRext=1 regardless of the TRext value in the Query that initiated the round.

The Reset ReadProtect command is structured as following:

- 16 bit command
- Password: 32 bit Access-Password XOR with 2 times current RN16
 Remark: To generate the 32 bit password the 16 bit RN16 is duplicated and used two times to generate the 32 bit (e.g. a RN16 of 1234 will result in 1234 1234).
- 16 bit handle
- CRC-16 calculate over the first command-code bit to the last handle bit

Table 25. Reset ReadProtect command

	Command	Password	RN	CRC-16
# of bits	16	32	16	16
description	11100000 00000010	(access password) ⊗ 2*RN16	handle	-

Table 26. UCODE G2iM reply to a successful Reset ReadProtect command

	Header	RN	CRC-16
# of bits	1	16	16
description	0	handle	-

Table 27. Reset ReadProtect command-response table

Starting State	Condition	Response	Next State
ready	all	_	ready
arbitrate, reply, acknowledged	all	_	arbitrate
open	valid handle & valid access password	Backscatter handle, when done	open
	valid handle & invalid access password	_	arbitrate
	invalid handle	-	open
secured	valid handle & valid access password	Backscatter handle, when done	secured
	valid handle & invalid access password	_	arbitrate
	invalid handle	-	secured
killed	all	_	killed

10.7.6 ChangeEAS²

UCODE G2iM equipped RFID tags will also feature a stand-alone operating EAS alarm mechanism for fast and offline electronic article surveillance. The PSF bit of the Config-Word directly relates to the EAS Alarm feature. With an PSF bit set to '1' the tag will reply to an EAS_Alarm command by backscattering a 64 bit alarm code without the need of a Select or Query. The EAS is a built-in solution so no connection to a backend database is required. In case the EAS_Alarm command is not implemented in the reader a standard EPC SELCET to the Config-Word and Query can be used. When using standard SELECT/QUERY the EPC will be returned during inventory.

ChangeEAS can be executed from the Secured state only. The command will be ignored if the Access Password is zero, the command will also be ignored with an invalid CRC-16 or an invalid handle, the UCODE G2iM will than remain in the current state. The CRC-16 is calculated from the first command-code bit to the last handle bit. A frame-sync must be pre-pended the command.

The UCODE G2iM reply to a successful ChangeEAS will use the extended preamble, as appropriate (i.e. a Tag shall reply as if TRext=1) regardless of the TRext value in the Query that initiated the round.

After sending a ChangeEAS an interrogator shall transmit CW for less than TReply or 20 ms, where TReply is the time between the interrogator's ChangeEAS command and the UCODE G2iM backscattered reply. An interrogator may observe three possible responses after sending a ChangeEAS, depending on the success or failure of the operation

- ChangeEAS succeeds: After completing the ChangeEAS a UCODE G2iM will backscatter the reply shown in <u>Table 29</u> comprising a header (a 0-bit), the handle, and a CRC-16 calculated over the 0-bit and handle. If the interrogator observes this reply within
 - 20 ms then the ChangeEAS completed successfully.
- The UCODE G2iM encounters an error: The UCODE G2iM will backscatter an error code during the CW period rather than the reply shown in <u>Table 29</u> (see EPCglobal Spec for error-code definitions and for the reply format).
- ChangeEAS does not succeed: If the interrogator does not observe a reply within 20 ms then the ChangeEAS did not complete successfully. The interrogator may issue a Req_RN command (containing the handle) to verify that the G2iM is still in the interrogator's field, and may reissue the ChangeEAS command.

Upon receiving a valid ChangeEAS command a G2iM will perform the commanded set/reset operation of the PSF bit of the Configuration Word.

If PSF bit is set, the EAS_Alarm command will be available after the next power up and reply the 64 bit EAS code upon execution. Otherwise the EAS_Alarm command will be ignored.

Table 28. ChangeEAS command

	Command	ChangeEas	RN	CRC-16
# of bits	16	1	16	16
description	11100000 00000011	1 set PSF bit 0 reset PSF bit	handle	

SL3S1003_1013

Table 29. UCODE G2iM reply to a successful ChangeEAS command

	Header	RN	CRC-16
# of bits	1	16	16
description	0	handle	-

Table 30. ChangeEAS command-response table

Starting State	Condition	Response	Next state
ready	all	-	ready
arbitrate, reply, acknowledged	all	_	arbitrate
open	all	-	open
secured	valid handle	backscatter handle, when done	secured
	invalid handle	_	secured
killed	all	_	killed

10.7.7 EAS Alarm

Upon receiving an EAS_Alarm custom command the UCODE G2iM will immediately backscatter an EAS-Alarmcode in case the PSF bit of the Config-Word is set. The alarm code is returned without any delay caused by Select, Query and without the need for a backend database.

The EAS feature of the UCODE G2iM is available after enabling it by sending a ChangeEAS command described in <u>Section 10.7.6 "ChangeEAS2"</u> or after setting the PSF bit of the Config-Word to '1'. With the EAS-Alarm enabled the UCODE G2iM will reply to an EAS_Alarm command by backscattering a fixed 64 bit alarm code. A UCODE G2iM will reply to an EAS_Alarm command from the ready state only. As an alternative to the fast EAS_Alarm command a standard SELECT (upon the Config-Word) and QUERY can be used.

If the PSF bit is reset to '0' by sending a ChangeEAS command in the password protected Secure state or clearing the PSF bit the UCODE G2iM will not reply to an EAS_Alarm command.

The EAS Alarm command is structured as following:

- 16 bit command
- 16 bit inverted command
- DR (TRcal divide ratio) sets the T=>R link frequency as described in EPCglobal Spec. 6.3.1.2.8 and Table 6.9.
- M (cycles per symbol) sets the T=>R data rate and modulation format as shown in EPCglobal Spec. Table 6.10.
- TRext chooses whether the T=>R preamble is pre-pended with a pilot tone as described in EPCglobal Spec. 6.3.1.3.

A preamble must be pre-pended the EAS_Alarm command according EPCglobal Spec, 6.3.1.2.8.

Upon receiving an EAS_Alarm command the tag loads the CRC5 register with 01001b and backscatters the 64 bit alarm code accordingly. The reader is now able to calculate the CRC5 over the backscattered 64 bits received to verify the received code.

Table 31. EAS_Alarm command

	Command	Inv_Command	DR	М	TRext	CRC-16
# of bits	16	16	1	2	1	16
description	11100000 00000100	00011111 11111011	0: DR=8 1: DR=64/3	00: M=1 01: M=2 10: M=4 11: M=8	0: no pilot tone 1: use pilot tone	-

Table 32. UCODE G2iM reply to a successful EAS_Alarm command

	Header	EAS Code
# of bits	1	64
description	0	CRC5 (MSB)

Table 33. EAS_Alarm command-response table

	•		
Starting State	Condition	Response	Next state
ready	PSF bit is set	backscatter alarm code	ready
	PSF bit is cleard		
arbitrate, reply, acknowledged	all	-	arbitrate
open	all	-	open
secured	all	-	secured
killed	all	_	killed

11. Limiting values

Table 34. Limiting values[1][2]

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to RFN

vonagoo a	re referenced to IVI IV				
Symbol	Parameter	Conditions	Min	Max	Unit
Bare die I	imitations				
T _{stg}	storage temperature		-55	+125	°C
T _{amb}	ambient temperature		-40	+85	°C
V _{ESD}	electrostatic discharge voltage	Human body model	3] -	±2	kV
Pad limita	ations				
Vi	input voltage	absolute limits, VDD-OUT pad	-0.5	+2.5	V
l _o	output current	absolute limits input/output current, VDD-OUT pad	-0.5	+0.5	mA
P _i	input power	maximum power dissipation, RFP pad	-	100	mW

^[1] Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any conditions other than those described in the Operating Conditions and Electrical Characteristics section of this specification is not implied.

^[2] This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated maxima.

^[3] For ESD measurement, the die chip has been mounted into a CDIP20 package.

12. Characteristics

12.1 UCODE G2iM and UCODE G2iM+ bare die characteristics

Table 35. UCODE G2iM and UCODE G2iM+ RF interface characteristics (RFN, RFP)

Symbol	Parameter	Conditions		Min	Тур	Max	Uni
f _i	input frequency			840	-	960	MH
Normal mod	de - no external supply, read rang	e reduction OFF					
P _{i(min)}	minimum input power	READ sensitivity	[1][2][7]	-	-17.5	-	dBn
P _{i(min)}	minimum input power	WRITE, BLOCKWRITE sensitivity, (write range/read range - ratio)		-	30 20	-	%
Ci	input capacitance	parallel	[3]	-	0.77	-	pF
Q	quality factor	915 MHz	[3]	-	9.2	-	-
Z	impedance	866 MHz	<u>[3]</u>	-	27 –j234	-	Ω
		915 MHz	<u>[3]</u>	-	24 –j222	-	Ω
		953MHz	[3]	-	23 –j213	-	Ω
External sup	pply mode - VDD pad supplied, re	ead range reduction OFF					
$P_{i(min)} \\$	minimum input power	Ext. supplied READ	[1][2]	-	-27	-	dBn
		Ext. supplied WRITE	[2]	-	-27	-	dBn
Z	impedance	externally supplied, 915 MHz	[3]	-	8 -j228	-	Ω
Read range	reduction ON - no external supp	ly					
P _{i(min)}	minimum input power	4R on READ	[1][2][4]	-	+10	-	dBr
		4R on WRITE	[2][4]	-	+10	-	dBr
Z	impedance	4R on, 915 MHz	[3]	-	16 –j1	-	Ω
Modulation	resistance						
R	resistance	modulation resistance, max. backscatter = off	<u>[5]</u>	-	170	-	Ω
		modulation resistance, max. backscatter = on	<u>[6]</u>	-	55	-	Ω

^[1] Power to process a Query command.

^[2] Measured with a 50 Ω source impedance.

^[3] At minimum operating power.

^[4] It has to be assured the reader (system) is capable of providing enough field strength to give +10 dBm at the chip otherwise communication with the chip will not be possible.

^[5] Enables tag designs to be within ETSI limits for return link data rates of e.g. 320 kHz/M4.

^[6] Will result in up to 10 dB higher tag backscatter power at high field strength.

^[7] Results in approx. –18 dBm tag sensitivity on a 2 dBi gain antenna.

Table 36. VDD pin characteristics

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
Minimum	supply voltage/current - without assisted E	EPROM WRITE	[1][3][4]				
V_{DD}	supply voltage	minimum voltage		-	-	1.8	V
I _{DD}	supply current	minimum current, $I_{out} = 0 \mu A$		-	-	14	μΑ
		$I_{out} = 100 \mu A$				120	μΑ
Minimum	supply voltage/current - assisted EEPROM	READ and WRITE	[2][3][4]				
V _{DD}	supply voltage	minimum voltage, $I_{out} = 0 \mu A$		-	1.8	1.85	V
		$I_{out} = 100 \mu A$		-	-	1.95	V
I _{DD}	supply current	minimum current, $I_{out} = 0 \mu A$		-	-	135	μΑ
		$I_{out} = 100 \mu A$		-	-	265	μΑ
Maximum	supply voltage/current		[3][5]				
V_{DD}	supply voltage	absolute maximum voltage		2.2	-	-	V
I _{i(max)}	maximum input current	absolute maximum current		280	-	-	μΑ

- [1] Activates Digital Output (OUT pin), increases read range (external supplied).
- [2] Activates Digital Output (OUT pin), increases read and write range (external supplied).
- [3] Operating the chip outside the specified voltage range may lead to undefined behaviour.1925.
- [4] Either the voltage or the current needs to be above given values to guarantee specified functionality.
- [5] No proper operation is guaranteed if both, voltage and current, limits are exceeded.

Table 37. G2iM, G2iM+ VDD and OUT pin characteristics

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
OUT pin	characteristics						
V _{OL}	Low-level output voltage	Isink = 1mA		-	-	100	mV
V _{OH}	HIGH-level output voltage	VDD = 1.8 V; Isource = -100μ A		1.5	-	-	V
VDD/OUT	pin characteristics						
C _L	load capacitance	VDD - OUT pin max.	[1]	-	-	5	pF
V _o	output voltage	maximum RF peak voltage on VDD-OUT pins	[2]	-	-	500	mV
VDD/OUT	pin tamper alarm characteristics		[3]				
R _{L(max)}	maximum load resistance	resistance range high	[4]	-	-	<2	$M\Omega$
$R_{L(min)}$	minimum load resistance	resistance range low	<u>[5]</u>	>20	-	-	$M\Omega$

- [1] Is the sum of the allowed capacitance of the VDD and OUT pin referenced to RFN.
- [2] Is the maximum allowed RF input voltage coupling to the VDD/OUT pin to guarantee undisturbed chip functionality.
- [3] Resistance between VDD and OUT pin in checked during power up only.
- [4] Resistance range to achieve tamper alarm flag = 1.
- [5] Resistance range to achieve tamper alarm flag = 0:

SL3S1003_1013

Table 38. UCODE G2iM and UCODE G2iM+ memory characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
EEPROM o	characteristics					
t _{ret}	retention time	T _{amb} ≤ 55 °C	20	-	-	year
N _{endu(W)}	write endurance		1000	10000[1]	-	cycle

^[1] $T_{amb} \le 25 \, ^{\circ}C$

12.2 UCODE G2iM, G2iM+ SOT886 characteristics

Table 39. G2iM, G2iM+ RF interface characteristics (RFN, RFP)

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
Normal mode - no external supply, read range reduction OFF							
$P_{i\left(min\right)}$	minimum input power	READ sensitivity	[1][2]	-	-17.6	-	dBm
Z	impedance	915 MHz	[3]	-	21.2 –j199.7	-	Ω
Normal mode - externally supply VDD = 1.5 V, read range reduction OFF							
Z	impedance	915 MHz	[3]	-	6.9 –j205.5	-	Ω

^[1] Power to process a Query command.

Remark: For DC and memory characteristics refer to Table 36, Table 37 and Table 38.

^[2] Measured with a 50 Ω source impedance.

^[3] At minimum operating power.

13. Package outline

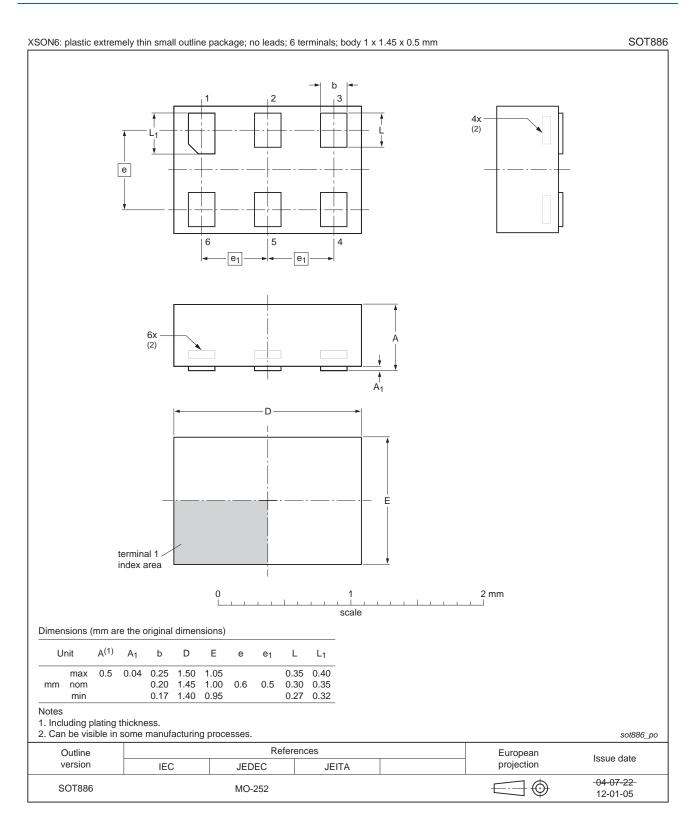


Fig 8. Package outline SOT886

SL3S1003_1013 All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2012. All rights reserved.

14. Handling information

14.1 Assembly conditions

14.1.1 General assembly recommendations

While pads OUT and VDD are not used for UCODE G2iM (SL3S1003), they are still electrically active and therefore must not be connected to the antenna and the RFN and RFP pads.

In case of any doubts, the customer is constrained to contact NXP Semiconductors for further clarification.

14.1.2 Label converting

Generally, an optimization of the entire lamination process by label manufacturer is recommended in order to minimize the stress onto the module and guarantee high assembly yield. Roller diameter must not be smaller than 45 mm.

15. Packing information

15.1 Wafer

See Ref. 20 "Data sheet - Delivery type description – General specification for 8" wafer on UV-tape with electronic fail die marking, BU-ID document number: 1093**"

16. Abbreviations

Table 40. Abbreviations

Acronym	Description
CRC	Cyclic Redundancy Check
CW	Continuous Wave
DC	Direct Current
EAS	Electronic Article Surveillance
EEPROM	Electrically Erasable Programmable Read Only Memory
EPC	Electronic Product Code (containing Header, Domain Manager, Object Class and Serial Number)
ESD	ElectroStatic Discharge
FCS	Flip Chip Strap
FM0	Bi phase space modulation
G2	Generation 2
HBM	Human Body Model
IC	Integrated Circuit
PSF	Product Status Flag
PCB	Printed Circuit Board
RF	Radio Frequency
UHF	Ultra High Frequency
TID	Tag IDentifier

17. References

- [1] EPCglobal: EPC Radio-Frequency Identity Protocols Class-1 Generation-2 UHF RFID Protocol for Communications at 860 MHz – 960 MHz, Version 1.1.0 (December 17, 2005)
- [2] EPCglobal: EPC Tag Data Standards
- [3] EPCglobal (2004): FMCG RFID Physical Requirements Document (draft)
- [4] EPCglobal (2004): Class-1 Generation-2 UHF RFID Implementation Reference (draft)
- [5] European Telecommunications Standards Institute (ETSI), EN 302 208: Electromagnetic compatibility and radio spectrum matters (ERM) – Radio-frequency identification equipment operating in the band 865 MHz to 868 MHz with power levels up to 2 W, Part 1 – Technical characteristics and test methods
- [6] European Telecommunications Standards Institute (ETSI), EN 302 208: Electromagnetic compatibility and radio spectrum matters (ERM) Radio-frequency identification equipment operating in the band 865 MHz to 868 MHz with power levels up to 2 W, Part 2 Harmonized EN under article 3.2 of the R&TTE directive
- [7] [CEPT1]: CEPT REC 70-03 Annex 1
- [8] [ETSI1]: ETSI EN 330 220-1, 2
- [9] [ETSI3]: ETSI EN 302 208-1, 2 V<1.1.1> (2004-09-Electromagnetic compatibility And Radio spectrum Matters (ERM) Radio Frequency Identification Equipment operating in the band 865 - MHz to 868 MHz with power levels up to 2 W Part 1: Technical characteristics and test methods.
- [10] [FCC1]: FCC 47 Part 15 Section 247
- [11] ISO/IEC Directives, Part 2: Rules for the structure and drafting of International Standards
- [12] ISO/IEC 3309: Information technology Telecommunications and information exchange between systems – High-level data link control (HDLC) procedures – Frame structure
- [13] ISO/IEC 15961: Information technology, Automatic identification and data capture Radio frequency identification (RFID) for item management Data protocol: application interface
- [14] ISO/IEC 15962: Information technology, Automatic identification and data capture techniques Radio frequency identification (RFID) for item management Data protocol: data encoding rules and logical memory functions
- [15] ISO/IEC 15963: Information technology Radio frequency identification for item management — Unique identification for RF tags
- [16] ISO/IEC 18000-1: Information technology Radio frequency identification for item management — Part 1: Reference architecture and definition of parameters to be standardized
- [17] ISO/IEC 18000-6: Information technology automatic identification and data capture techniques Radio frequency identification for item management air interface Part 6: Parameters for air interface communications at 860–960 MHz
- [18] ISO/IEC 19762: Information technology AIDC techniques Harmonized vocabulary
 Part 3: radio-frequency identification (RFID)

SL3S1003_1013

- [19] U.S. Code of Federal Regulations (CFR), Title 47, Chapter I, Part 15: Radio-frequency devices, U.S. Federal Communications Commission.
- [20] Data sheet Delivery type description General specification for 8" wafer on UV-tape with electronic fail die marking, BU-ID document number: 1093**3

^{3. ** ...} document version number

18. Revision history

Table 41. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
SL2S1003_1013 v. 3.4	20120227	Product data sheet	-	SL2S1003_1013 v. 3.3
Modifications:	• Figure 4 "SL3S10x3"	wafer layout": Figure notes	(1) and (2) update	ed
SL2S1003_1013 v. 3.3	20120130	Product data sheet		SL2S1003_1013 v. 3.2
Modifications:	 Section 14 "Handling 	information":added		
SL2S1003_1013 v. 3.2	20120111	Product data sheet	-	SL2S1003_1013 v. 3.1
Modifications:	 Section 8.1 "Wafer la 	yout": figure notes (1), (2),	(8) and (9) update	d
SL2S1003_1013 v. 3.1	20111117	Product data sheet	-	SL2S1003_1013 v. 3.0
Modifications:	 Security status chang 	ged into COMPANY PUBLI	С	
	 Package delivery form 	m SOT886 added		
	 Section 5 "Marking", 	Section 13 "Package outling	e": added	
SL2S1003_1013 v. 3.0	20110503	Product data sheet	-	SL2S1003_1013 v. 2.0
Modifications:	 Specification status c 	changed into product		
	 Some EPC bit values 	s changed		
	 Table 16 added 			
SL2S1003_1013 v. 2.0	20110415	Preliminary data sheet	-	-

19. Legal information

19.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

19.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

19.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

SL3S1003_1013

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2012. All rights reserved.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Bare die — All die are tested on compliance with their related technical specifications as stated in this data sheet up to the point of wafer sawing and are handled in accordance with the NXP Semiconductors storage and transportation conditions. If there are data sheet limits not guaranteed, these will be separately indicated in the data sheet. There are no post-packing tests performed on individual die or wafers.

NXP Semiconductors has no control of third party procedures in the sawing, handling, packing or assembly of the die. Accordingly, NXP Semiconductors assumes no liability for device functionality or performance of the die or systems after third party sawing, handling, packing or assembly of the die. It is the responsibility of the customer to test and qualify their application in which the die is used.

All die sales are conditioned upon and subject to the customer entering into a written die sale agreement with NXP Semiconductors through its legal department.

19.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

UCODE — is a trademark of NXP B.V.

20. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

21. Contents

1	General description	. 1	10.7.3.1	Private Memory Segment	24
2	Features and benefits	. 1	10.7.4	ReadProtect	
2.1	Key features		10.7.5	Reset ReadProtect ²	26
2.1.1	Memory		10.7.6	ChangeEAS ²	28
2.2	Key benefits		10.7.7	EAS_Alarm	29
2.2.1	End user benefit		11	Limiting values	3
2.2.2	Antenna design benefits		12	Characteristics	
2.2.3	Label manufacturer benefit		12.1	UCODE G2iM and UCODE G2iM+ bare die	-
2.3	Custom commands	. 3		characteristics	32
3	Applications	. 3	12.2	UCODE G2iM, G2iM+ SOT886	
3.1	Markets			characteristics	34
3.2	Applications		13	Package outline	3
4	Ordering information	. 4	14	Handling information	36
5	Marking	. 4	14.1	Assembly conditions	36
6	Block diagram	. 5	14.1.1	General assembly recommendations	
7	Pinning information	. 6	14.1.2	Label converting	
7.1	Pin description		15	Packing information	
8	Wafer layout	. 7	15.1	Wafer	
8.1	Wafer layout		16	Abbreviations	37
9	Mechanical specification	. 8	17	References	38
9.1	Wafer specification	. 8	18	Revision history	40
9.1.1	Wafer	. 8	19	Legal information	4
9.1.2	Fail die identification		19.1	Data sheet status	4
9.1.3	Map file distribution	. 9	19.2	Definitions	
10	Functional description	10	19.3	Disclaimers	
10.1	Air interface standards	10	19.4	Trademarks	
10.2	Power transfer		20	Contact information	42
10.3	Data transfer		21	Contents	43
10.3.1	Reader to tag Link				
10.3.2	Tag to reader Link	10			
10.4	UCODE G2iM and UCODE G2iM+	44			
10.5	differences				
10.5	UCODE G2iM and UCODE G2iM+ memory .				
10.6.1	UCODE G2iM and UCODE G2iM+ overall	12			
. 0.0	memory map	13			
10.6.2	UCODE G2iM and UCODE G2iM+ TID				
	memory details	15			
10.7	Custom commands				
10.7.1	ChangeConfig	16			
	UCODE G2iM and UCODE G2iM+ special				
	features	.16			
10.7.2	UCODE G2iM and UCODE G2iM+ special				
40.70	features control mechanism	20			
10.7.3	UCODE G2iM+ memory configuration	22			
	connocinechanism	//			

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.